I've been thinking about a following problem - there are two arrays, and I need to find elements not common for them both, for example:
a = [1,2,3,4]
b = [1,2,4]
And the expected answer is [3]
.
So far I've been doing it like this:
a.select { |elem| !b.include?(elem) }
But it gives me O(N ** 2)
time complexity. I'm sure it can be done faster ;)
Also, I've been thinking about getting it somehow like this (using some method opposite to &
which gives common elements of 2 arrays):
a !& b #=> doesn't work of course
Another way might be to add two arrays and find the unique element with some method similar to uniq
, so that:
[1,1,2,2,3,4,4].some_method #=> would return 3
The simplest (in terms of using only the arrays already in place and stock array methods, anyway) solution is the union of the differences:
a = [1,2,3,4]
b = [1,2,4]
(a-b) | (b-a)
=> [3]
This may or may not be better than O(n**2)
. There are other options which are likely to give better peformance (see other answers/comments).
Edit: Here's a quick-ish implementation of the sort-and-iterate approach (this assumes no array has repeated elements; otherwise it will need to be modified depending on what behavior is wanted in that case). If anyone can come up with a shorter way to do it, I'd be interested. The limiting factor is the sort used. I assume Ruby uses some sort of Quicksort, so complexity averages O(n log n)
with possible worst-case of O(n**2)
; if the arrays are already sorted, then of course the two calls to sort
can be removed and it will run in O(n)
.
def diff a, b
a = a.sort
b = b.sort
result = []
bi = 0
ai = 0
while (ai < a.size && bi < b.size)
if a[ai] == b[bi]
ai += 1
bi += 1
elsif a[ai]<b[bi]
result << a[ai]
ai += 1
else
result << b[bi]
bi += 1
end
end
result += a[ai, a.size-ai] if ai<a.size
result += b[bi, b.size-bi] if bi<b.size
result
end