When doing:
import pandas
x = pandas.read_csv('data.csv', parse_dates=True, index_col='DateTime',
names=['DateTime', 'X'], header=None, sep=';')
with this data.csv
file:
1449054136.83;15.31
1449054137.43;16.19
1449054138.04;19.22
1449054138.65;15.12
1449054139.25;13.12
(the 1st colum is a UNIX timestamp, i.e. seconds elapsed since 1/1/1970), I get this error when resampling the data every 15 second with x.resample('15S')
:
TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex
It's like the "datetime" information has not been parsed:
X
DateTime
1.449054e+09 15.31
1.449054e+09 16.19
...
How to import a .CSV with date stored as timestamp with pandas module?
Then once I will be able to import the CSV, how to access to the lines for which date > 2015-12-02 12:02:18 ?
My solution was similar to Mike's:
import pandas
import datetime
def dateparse (time_in_secs):
return datetime.datetime.fromtimestamp(float(time_in_secs))
x = pandas.read_csv('data.csv',delimiter=';', parse_dates=True,date_parser=dateparse, index_col='DateTime', names=['DateTime', 'X'], header=None)
out = x.truncate(before=datetime.datetime(2015,12,2,12,2,18))