I have a set of distinct values. I am looking for a way to generate all partitions of this set, i.e. all possible ways of dividing the set into subsets.

For instance, the set `{1, 2, 3}`

has the following partitions:

```
{ {1}, {2}, {3} },
{ {1, 2}, {3} },
{ {1, 3}, {2} },
{ {1}, {2, 3} },
{ {1, 2, 3} }.
```

As these are sets in the mathematical sense, order is irrelevant. For instance, `{1, 2}, {3}`

is the same as `{3}, {2, 1}`

and should not be a separate result.

A thorough definition of set partitions can be found on Wikipedia.

I've found a straightforward recursive solution.

First, let's solve a simpler problem: how to find all partitions consisting of exactly two parts. For an n-element set, we can count an int from 0 to (2^n)-1. This creates every n-bit pattern, with each bit corresponding to one input element. If the bit is 0, we place the element in the first part; if it is 1, the element is placed in the second part. This leaves one problem: For each partition, we'll get a duplicate result where the two parts are swapped. To remedy this, we'll always place the first element into the first part. We then only distribute the remaining n-1 elements by counting from 0 to (2^(n-1))-1.

Now that we can partition a set into two parts, we can write a recursive function that solves the rest of the problem. The function starts off with the original set and finds all two-part-partitions. For each of these partitions, it recursively finds all ways to partition the second part into two parts, yielding all three-part partitions. It then divides the last part of each of these partitions to generate all four-part partitions, and so on.

The following is an implementation in C#. Calling

```
Partitioning.GetAllPartitions(new[] { 1, 2, 3, 4 })
```

yields

```
{ {1, 2, 3, 4} },
{ {1, 3, 4}, {2} },
{ {1, 2, 4}, {3} },
{ {1, 4}, {2, 3} },
{ {1, 4}, {2}, {3} },
{ {1, 2, 3}, {4} },
{ {1, 3}, {2, 4} },
{ {1, 3}, {2}, {4} },
{ {1, 2}, {3, 4} },
{ {1, 2}, {3}, {4} },
{ {1}, {2, 3, 4} },
{ {1}, {2, 4}, {3} },
{ {1}, {2, 3}, {4} },
{ {1}, {2}, {3, 4} },
{ {1}, {2}, {3}, {4} }.
```

```
using System;
using System.Collections.Generic;
using System.Linq;
namespace PartitionTest {
public static class Partitioning {
public static IEnumerable<T[][]> GetAllPartitions<T>(T[] elements) {
return GetAllPartitions(new T[][]{}, elements);
}
private static IEnumerable<T[][]> GetAllPartitions<T>(
T[][] fixedParts, T[] suffixElements)
{
// A trivial partition consists of the fixed parts
// followed by all suffix elements as one block
yield return fixedParts.Concat(new[] { suffixElements }).ToArray();
// Get all two-group-partitions of the suffix elements
// and sub-divide them recursively
var suffixPartitions = GetTuplePartitions(suffixElements);
foreach (Tuple<T[], T[]> suffixPartition in suffixPartitions) {
var subPartitions = GetAllPartitions(
fixedParts.Concat(new[] { suffixPartition.Item1 }).ToArray(),
suffixPartition.Item2);
foreach (var subPartition in subPartitions) {
yield return subPartition;
}
}
}
private static IEnumerable<Tuple<T[], T[]>> GetTuplePartitions<T>(
T[] elements)
{
// No result if less than 2 elements
if (elements.Length < 2) yield break;
// Generate all 2-part partitions
for (int pattern = 1; pattern < 1 << (elements.Length - 1); pattern++) {
// Create the two result sets and
// assign the first element to the first set
List<T>[] resultSets = {
new List<T> { elements[0] }, new List<T>() };
// Distribute the remaining elements
for (int index = 1; index < elements.Length; index++) {
resultSets[(pattern >> (index - 1)) & 1].Add(elements[index]);
}
yield return Tuple.Create(
resultSets[0].ToArray(), resultSets[1].ToArray());
}
}
}
}
```